Abstract
We consider an investment problem where observing and trading are only possible at random times. In addition, we introduce drawdown constraints which require that the investor's wealth does not fall under a prior fixed percentage of its running maximum. The financial market consists of a riskless bond and a stock which is driven by a Lévy process. Moreover, a general utility function is assumed. In this setting we solve the investment problem using a related limsup Markov decision process. We show that the value function can be characterized as the unique fixed point of the Bellman equation and verify the existence of an optimal stationary policy. Under some mild assumptions the value function can be approximated by the value function of a contracting Markov decision process. We are able to use Howard's policy improvement algorithm for computing the value function as well as an optimal policy. These results are illustrated in a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.