Abstract

In this work we investigate the design of energy-optimal policies for ultra-reliable low-latency communications (URLLC) over a non-stationary wireless channel, using a contextual reinforcement learning (RL) framework. We consider a point-to-point communication system over a piece-wise stationary wireless channel where the Doppler frequency of the channel switches between two distinct values, depending on the underlying state of the channel. To benchmark the performance, first we consider an oracle agent which has a perfect but causal information about the switching instants, and consists of two deep RL (DRL) agents each of which is tasked with optimal decision making in a unique partially stationary environment. Comparing the performance of the oracle agent with the conventional DRL reveals that the performance gain obtained using oracle agent depends on the dynamics of the non-stationary channel. In particular, for a non-stationary channel with faster switching rate the oracle agent results in approximately 15 − 20% less energy consumption. In contrast, for a channel with slower switching rate the performance of the oracle agent is similar to the conventional DRL agent. Next, for a more realistic scenario when the information about the switching instants for the Doppler frequency of the underlying channel is not available, we model the non-stationary channel as a regime switching process modulated by a Markov process, and adapt the oracle agent by aiding a state tracking algorithm proposed for the regime switching process. Our simulation results show that the proposed algorithm yields a better performance compared to the conventional DRL agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.