Abstract

Erdős and Fishburn studied the maximum number of points in the plane that span $k$ distances (i.e. the set of pairwise distances between points has cardinality $k$) and classified these configurations, as an inverse problem of the Erdős distinct distances problem. We consider the analogous problem for triangles. Past work has obtained the optimal sets for one and two distinct triangles in the plane. In this paper, we resolve a conjecture that at most six points in the plane can span three distinct triangles, and obtain the hexagon as the unique configuration that achieves this. We also provide evidence that optimal sets cannot be on the square lattice in the general case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.