Abstract
ABSTRACTA one parameter Laguerre's family of iterative methods for solving nonlinear equations is considered. This family includes the Halley, Ostrowski and Euler methods, most frequently used one-point third-order methods for finding zeros. Investigation of convergence quality of these methods and their ranking is reduced to searching optimal parameter of Laguerre's family, which is the main goal of this paper. Although methods from Laguerre's family have been extensively studied in the literature for more decades, their proper ranking was primarily discussed according to numerical experiments. Regarding that such ranking is not trustworthy even for algebraic polynomials, more reliable comparison study is presented by combining the comparison by numerical examples and the comparison using dynamic study of methods by basins of attraction that enable their graphic visualization. This combined approach has shown that Ostrowski's method possesses the best convergence behaviour for most polynomial equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.