Abstract

We study a JPEG2000 compatible multicomponent image compression scheme, which consists in applying a discrete wavelet transform (DWT) to each component of the image and a spectral linear transform between components. We consider the case of a spectral transform which adapts to the image and a 2-D DWT with fixed coefficients. In Akam Bita et al. (accepted for publication, [6]) we gave a criterion minimized by optimal spectral transforms. Here, we derive a simplified criterion by treating the transformed coefficients in each subband as having a Gaussian distribution of variance depending on the subband. Its minimization under orthogonality constraint is shown to lead to a joint approximate diagonalization problem, for which a fast algorithm ( JADO) is available. Performances in coding of the transform returned by JADO are compared on hyper- and multi-spectral images with the Karhunen–Loève transform (KLT) and the optimal transform (without Gaussianity assumption) returned by the algorithm OrthOST introduced in Akam Bita et al. (accepted for publication, [6]). For hyper- (resp. multi-) spectral images, we observe that JADO returns a transform which performs appreciably better than (resp. as well as) the KLT at medium to high bit-rates, nearly attaining (resp. slightly below) the performances of the transform returned by OrthOST, with a significantly lower complexity than the algorithm OrthOST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.