Abstract

We study an insurance model where the risk can be controlled by reinsurance and investment in the financial market. We consider a finite planning horizon where the timing of the events, namely the arrivals of a claim and the change of the price of the underlying asset(s), corresponds to a Poisson point process. The objective is the maximization of the expected total utility and this leads to a nonstandard stochastic control problem with a possibly unbounded number of discrete random time points over the given finite planning horizon. Exploiting the contraction property of an appropriate dynamic programming operator, we obtain a value-iteration type algorithm to compute the optimal value and strategy and derive its speed of convergence. Following Schäl (2004) we consider also the specific case of exponential utility functions whereby negative values of the risk process are penalized, thus combining features of ruin minimization and utility maximization. For this case we are able to derive an explicit solution. Results of numerical computations are also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.