Abstract
For Gaussian multiple-input multiple-output (MIMO) relay channels with partial decode-and-forward, the optimal type of input distribution is still an open question in general. Recent research has revealed that in some other scenarios with unknown optimal input distributions (e.g., interference channels), improper (i.e., noncircular) Gaussian distributions can outperform proper (circular) Gaussian distributions. In this paper, we show that this is not the case for partial decode-and-forward in the Gaussian MIMO relay channel with Gaussian transmit signals, i.e., we show that a proper Gaussian input distribution is the optimal one among all Gaussian distributions. In order to prove this property, an innovation covariance matrix is introduced, and a decomposition is performed by considering the optimization over this matrix as an outer problem. A key point for showing optimality of proper signals then is a reformulation that reveals that one of the subproblems is equivalent to a sum rate maximization in a two-user MIMO broadcast channel under a sum covariance constraint, for which the optimality of proper signals can be shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.