Abstract

In this paper we present a new approach on optimal forecasting by using the fuzzy set theory and soft computing methods for the dynamic data analysis. This research is based on the concepts of fuzzy membership function as well as the natural selection of evolution theory. Some discussions in the sensitivity of the design of fuzzy processing will be provided. Through the design of genetic evolution, the AIC criteria is used as the adjust function, and the fuzzy memberships function of each gene model are calculated. Simulation and empirical examples show that our proposed forecasting technique can give an optimal forecasting in time series analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.