Abstract

This paper addresses the problem of optimal scheduling of an aggregated power profile (during a coordinated discharging or charging operation) by means of a heterogeneous fleet of storage devices subject to availability constraints. Devices have heterogeneous initial levels of energy, power ratings and efficiency; moreover, the fleet operates without cross-charging of the units. An explicit feedback policy is proposed to compute a feasible schedule whenever one exists and scalable design procedures to achieve maximum time to failure or minimal unserved energy in the case of unfeasible aggregated demand profiles. Finally, a time-domain characterization of the set of feasible demand profiles using aggregate constraints is proposed, suitable for optimization problems where the aggregate population behaviour is of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call