Abstract

In this paper, we consider a board-level routing problem which is applicable to field-programmable gate arrays (FPGA)-based logic emulation systems such as the Realizer System and the Enterprise Emulation System manufactured by Quickturn Design Systems. For the case where all nets are two-terminal nets, we present an O(n/sup 2/)-time optimal algorithm where n is the number of nets. Our algorithm guarantees 100% routing completion if the number of interchip signal pins on each FPGA chip in the logic emulation system is less than or equal to the number of I/O pins on the chip. Our algorithm is based on iterative computation of Euler circuits in graphs. We also prove that the routing problem with multiterminal nets is NP-complete. Also we suggest one way to handle multiterminal nets using some additional resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.