Abstract

If is a collection of operators on the complex Hilbert space , then the lattice of all subspaces of which are invariant under every operator in is denoted by Lat . An algebra of operators on is defined (3; 4) to be reflexive if for every operator B on the inclusion Lat ⊆ Lat B implies .Arveson (1) has proved the following theorem. (The abbreviation “m.a.s.a.” stands for “maximal abelian self-adjoint algebra”.)ARVESON's THEOREM. Ifis a weakly closed algebra which contains an m.a.s.a.y and if Lat, then is the algebra of all operators on .A generalization of Arveson's Theorem was given in (3). Another generalization is Theorem 2 below, an equivalent form of which is Corollary 3. This theorem was motivated by the following very elementary proof of a special case of Arveson's Theorem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call