Abstract

On the basis of piecewise quadratic interpolation, semi-analytical approximations of the normal derivative of the simple layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration over the variable $\rho=(r^{2}-d^{2})^{1/2} $ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with cubic velocity uniformly near the boundary of the class $C^{5}$, as well as on the boundary itself. It is also proved that, by analogy with the exact function, the approximations suffer a discontinuity at the boundary, the magnitude of which is proportional to the values of the interpolated density function, but they can be extended on the boundary to functions that are continuous either on a closed internal border domain or on a closed external one. Theoretical conclusions about uniform convergence are confirmed by the results of calculating the normal derivative near the boundary of a unit circle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.