Abstract
This article discusses the author’s version of the technology for solving a one-dimensional boundary value problem for a one-dimensional advection–diffusion equation based on the method of separation of variables, as well as the theory of eigenvalues and eigenfunctions when constructing a solution to a differential equation. This problem is solved in two stages. Firstly, we illustrate the technology of separating variables for equations with fractional derivatives, and then apply the theory of eigenvalues and eigenfunctions to obtain an exact solution in the form of an infinite series. Since this series converges very quickly, it is natural to replace it with the sum of the first few terms. The approximate solution obtained in this way is quite suitable for numerical calculations in practice. The article provides a listing of the program for performing calculations, as well as the results of calculations themselves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.