Abstract

Abstract Characteristics and dynamics of offshore diurnal waves induced by land–sea differential heating are examined using linear theory. Two types of heating profiles are investigated, namely a shallow heating source confined within an atmospheric boundary layer (BL) and a deep heating source located above the boundary layer. It is demonstrated that a boundary layer top inversion or a more stable layer aloft tends to partially trap diurnal waves in the BL and consequently extend perturbations well offshore. The wave amplitude decays with offshore distance due to BL friction and leakage of energy into the free atmosphere. The dependence of trapped waves on the inversion height and strength, atmosphere stratification, latitude, BL friction, and background winds is investigated. Diurnal waves generated by a deep heating source extending well above the BL are characterized by longer wavelengths, faster propagation, and substantially longer e-folding decay distances than waves induced by a BL source. For the latter, BL friction has little impact on the e-folding decay distance, as waves are mostly located in the free atmosphere rather than in a frictional BL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call