Abstract

One of the studies on new drug delivery and release systems that has increased in recent years is the study using plasmonic nanoparticles. In this study, polydopamine nanoparticles (PDOP NPs), which contribute to photothermal drug release by near infrared radiation (NIR), were decorated with gold nanoparticles (AuNPs) to utilize their plasmonic properties, and a core-satellite-like system was formed. With this approach, epirubicin (EPI)-loaded PDOP NPs were prepared by utilizing the plasmonic properties of AuNPs. Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) methods were used to evaluate the structural properties of these particles. The release behavior of the prepared structures in acidic (pH 5.0) and neutral (pH 7.4) environments based on the ON/OFF approach was also examined. The biocompatibility properties of the particles were evaluated on mouse fibroblast (L929) and anticancer activities on neuroblastoma (SH-SY5Y) cells. The effects of prepared EPI-loaded particles and laser-controlled drug release on ROS production, genotoxicity, and apoptosis were also investigated in SH-SY5Y cells. With the calculated combination index (CI) value, it was shown that the activity of EPI-loaded AuNP@PDOP NPs increased synergistically with the ON/OFF-based approach. The developed combination approach is considered to be remarkable and promising for further evaluation before clinical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call