Abstract

A series of first row transition metal complexes of the tripodal ligand 2,2',2"-nitrilotribenzoic acid H3L has been prepared and characterised by X-ray crystallography: Mononuclear [M(L)]- species [Cu(H2O)4]3[Cu(L)(H2O)]6.25H2O (2), [Co(H2O)6][Co(L)(H2O)].8H2O (4), [Zn(H2O)6][Zn(L)(H2O)].8H2O (5) and a neutral [M(L)] complex [Fe(III)2(L)(H2O)3].5H2O (8) are formed as well as dimeric [M(L)]2 2- species (HNEt3)2[Cu(L)]2.2CH3CN (1), (HNEt3)3[Ni(L)]2(ClO4).H2O (3), (HNEt3)2[Fe(II)(L)]2.2CH3CN (6) and (HNEt3)2[Fe(III)2(L)2(mu-O)](7). The complexes display a unique variation in the M-N distance (2.09 A for Cu(II) to 3.29 A for Fe(III)) to the bridgehead triphenylamine donor and are classified into compounds with "On","Off" and "Intermediate" N-coordination. The trigonal-bipyramidal coordination polyhedron changes towards tetrahedral in the intermediate and octahedral in the Off-state. The M-N distance of individual complexes is reversibly tuned by external chemical input such as changes of metal ion oxidation state (Fe(II)/Fe(III)) or variation of the axial coligand as a consequence of solvent or pH variation. Possible reasons for the exceptional tolerance of the M-N bond to distance variations are discussed under consideration of gas phase DFT calculations of [Zn(L)]-.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call