Abstract

Abstract Recent work in the field of occupied-orbital dependent (OOD) exchange-correlation functionals in density functional theory is reviewed. The main emphasis is put on the development of so-called local hybrid functionals, and on the nontrivial self-consistent implementation of complex OOD functionals. Local hybrids employ a so-called local mixing function (LMF) to govern their position-dependent exact-exchange admixture. Recently proposed LMFs have provided local hybrids of remarkable accuracy in the computation of thermochemical data and classical reaction barriers, and with good performance for some magnetic-resonance parameters. These local hybrids mix only local and exact exchange and exhibit very few semi-empirical parameters. Further refinement and the efficient implementation of local hybrids offers the prospect of a new level of accuracy in Kohn-Sham density functional calculations. Two levels of the self-consistent implementation of OOD functional are discussed: one may either stop after the derivation of the functional derivatives with respect to the orbitals (FDOs), leading to nonlocal potentials. This is discussed for local hybrids and for general OOD functionals up to and including the complicated B05 real-space model of nondynamical correlation. Alternatively, one may append an additional transformation to local and multiplicative potentials based on the optimized effective potential (OEP) approach or of approximations to the OEP. Numerical results for various properties are reviewed briefly, ranging from nonself-consistent energies via FDO-based calculations to OEP-transformed potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call