Abstract

A number of recent results have constructed randomness extractors and pseudorandom generators (PRGs) directly from certain error-correcting codes. The underlying construction in these results amounts to picking a random index into the codeword and outputting m consecutive symbols (the codeword is obtained from the weak random source in the case of extractors, and from a hard function in the case of PRGs). We study this construction applied to general cyclic error-correcting codes, with the goal of understanding what pseudorandom objects it can produce. We show that every cyclic code with sufficient distance yields extractors that fool all linear tests. Further, we show that every polynomial code with sufficient distance yields extractors that fool all low-degree prediction tests. These are the first results that apply to univariate (rather than multivariate) polynomial codes, hinting that Reed-Solomon codes may yield good randomness extractors. Our proof technique gives rise to a systematic way of producing unconditional PRGs against restricted classes of tests. In particular, we obtain PRGs fooling all linear tests (which amounts to a construction of e-biased spaces), and we obtain PRGs fooling all low-degree prediction tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.