Abstract

A straightforward procedure is proposed for expanding a molecular orbital determinantal wave function into a set of determinantal wave functions composed of atomic orbitals localized at the atoms of a molecule. By employing this method, atomic orbital determinants and their weights can be derived for a molecule from the computed molecular-orbital wave function. The procedure permits the interpretation of a molecular orbital determinantal wave function in terms of bonding schemes related to the classic resonance structures used by organic chemists. By using the unrestricted molecular orbital determinant, bonding schemes and their weights are obtained for butadiene, the butadiene radical cation and the acrylonitrile radical anion. Their dominant bonding schemes are in accord with the relevant resonance structures for these molecules. For the butadiene radical cation and the acrylonitrile anion they are shown to be compatible with the accepted mechanisms of the electrochemical coupling reactions of butadiene and acrylonitrile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.