Abstract

A relative attitude estimation algorithm is developed based on a stereo vision system and a gyroscope, and the observability of this algorithm is studied. First, we build the error model of the relative attitude determination system. Second, the observability of every state of the filter is studied. Third, by choosing different variables as the states of the error model, the unobservable subspace of the system is confirmed. Furthermore, the system structural decomposition reveals that this type of relative attitude determination system can only determine the relative attitude between the deputy and the chief and that their gyro drift errors are unobservable. In addition, the structural decomposition also tells us that when the feature points measured by the stereo vision system are greater than two, increasing the number of feature points provides little benefit for improving the observability of the gyro drift errors. Considering the incomplete observability of the original system, the star sensor is added into the system to enable it to be completely observable. The final simulation result indicates that after adding the star sensor, the system, which becomes completely observable, can estimate the body attitude, the relative attitude and the gyro error while providing improved accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.