Abstract

We investigate the interaction of differential rotation and a misaligned magnetic field. The incompressible magnetohydrodynamic equations are solved numerically for a free-decay problem. In the kinematic limit, differential rotation annihilates the non-axisymmetric field on a timescale proportional to the cube root of magnetic Reynolds number ($Rm$), as predicted by R\"adler. Nonlinearly, the outcome depends upon the initial energy in the non-axisymmetric part of the field. Sufficiently weak fields approach axisymmetry as in the kinematic limit; some differential rotation survives across magnetic surfaces, at least on intermediate timescales. Stronger fields enforce uniform rotation and remain non-axisymmetric. The initial field strength that divides these two regimes does not follow the scaling $Rm^{-1/3}$ predicted by quasi-kinematic arguments, perhaps because our $Rm$ is never sufficiently large or because of reconnection. We discuss the possible relevance of these results to tidal synchronization and tidal heating of close binary stars, particularly double white dwarfs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.