Abstract

Three-dimensional wake instabilities in the form of oblique shedding and vortex dislocations in the flow past an inclined flat plate of angle of attack 20° and Reynolds number 1000 have been reported earlier [D. Yang, B. Pettersen, H. I. Andersson, and V. D. Narasimhamurthy, Phys. Fluids 24, 084103 (2012)]10.1063/1.4744982. In the current study, direct numerical simulations were performed to further explore this bifurcation. At lower Reynolds numbers, i.e., well below 525, the three-dimensional wake was found to be stable and in a parallel shedding mode. However, as the Reynolds number increases, it was observed that both parallel and oblique vortex sheddings arose naturally. Vortex dislocations appeared at the juxtaposition of oblique and parallel shedding modes. The velocity signals were analyzed by a wavelet transformation, from which the instantaneous characteristics of three-dimensional vortex shedding were obtained and examined. Results show that the phase difference of shed vortex rollers in the sp...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.