Abstract

A modified method is presented to generate artificial magnetic turbulence that is used for test-particle simulations. Such turbulent fields are obtained from the superposition of a set of wave modes with random polarizations and random directions of propagation. First, it is shown that the new method simultaneously fulfils requirements of isotropy, equal mean amplitude and variance for all field components, and vanishing divergence. Second, the number of wave modes required for a stochastic particle behavior is investigated by using a Lyapunov approach. For the special case of slab turbulence, it is shown that already for 16 wave modes the particle behavior agrees with that shown for considerably larger numbers of wave modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.