Abstract

This paper is devoted to numerical analysis of a new class of elliptic variational–hemivariational inequalities in the study of a family of contact problems for elastic ideally locking materials. The contact is described by the Signorini unilateral contact condition and the friction is modeled by a nonmonotone multivalued subdifferential relation allowing slip dependence. The problem involves a nonlinear elasticity operator, the subdifferential of the indicator function of a convex set for the locking constraints and a nonconvex locally Lipschitz friction potential. Solution existence and uniqueness result on the inequality can be found in Migórski and Ogorzaly (2017) . In this paper, we introduce and analyze a finite element method to solve the variational–hemivariational inequality. We derive a Céa type inequality that serves as a starting point of error estimation. Numerical results are reported, showing the performance of the numerical method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call