Abstract
Given a finite transitive permutation group G, we investigate number fields F/ℚ of Galois group G whose discriminant is only divisible by small prime powers. This generalizes previous investigations of number fields with squarefree discriminant. In particular, we obtain a comprehensive result on number fields with cubefree discriminant. Our main tools are arithmetic-geometric, involving in particular an effective criterion on ramification in specializations of Galois covers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.