Abstract
Minimum Spanning Trees of weighted graphs are fundamental objects in numerous applications. In particular in distributed networks, the minimum spanning tree of the network is often used to route messages between network nodes. Unfortunately, while being most efficient in the total cost of connecting all nodes, minimum spanning trees fail miserably in the desired property of approximately preserving distances between pairs. While known lower bounds exclude the possibility of the worst case distortion of a tree being small, it was shown in [4] that there exists a spanning tree with constant average distortion. Yet, the weight of such a tree may be significantly larger than that of the MST. In this paper, we show that any weighted undirected graph admits a spanning tree whose weight is at most (1 + ρ) times that of the MST, providing constant average distortion O(1/ρ2).1The constant average distortion bound is implied by a stronger property of scaling distortion, i.e., improved distortion for smaller fractions of the pairs. The result is achieved by first showing the existence of a low weight spanner with small prioritized distortion, a property allowing to prioritize the nodes whose associated distortions will be improved. We show that prioritized distortion is essentially equivalent to coarse scaling distortion via a general transformation, which has further implications and may be of independent interest. In particular, we obtain an embedding for arbitrary metrics into Euclidean space with optimal prioritized distortion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.