Abstract

Let G be a finite group and X a (di)graph. If there exists a semiregular subgroup G¯ of the automorphism group Aut(X) isomorphic to G with n orbits on V(X) then the (di)graph X is called an n-Cayley graph on G. If, in addition, this subgroup G¯ is normal in Aut(X) then X is called a normal n-Cayley graph on G.In this paper the normalizers of semiregular subgroups of the automorphism group of a digraph are characterized. It is proved that every finite group admits a vertex-transitive normal n-Cayley graph for every n ≥ 2. For the most part the graphs are constructed as Cartesian product of graphs. It is proved that a Cartesian product of two relatively prime graphs is Cayley (resp. normal Cayley) if and only if the factor graphs are Cayley (resp. normal Cayley). In addition, the concept of graphical regular representations (GRRs) is generalized to n-GRR in a natural way, and it is proved that any group admitting a GRR also admits an n-GRR for any n ≥ 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.