Abstract

There are two concepts of standard/nonstandard models in simple type theory.The first concept—we might call it the pragmatical one—interprets type theory as a first order logic with countably many sorts of variables: the variables for the urelements of type 0,…, the n-ary relational variables of type (τ1, …, τn) with arguments of type (τ1,…,τn), respectively. If A ≠ ∅ then 〈Aτ〉 is called a model of type logic, if A0 = A and . 〈Aτ〉 is called full if, for every τ = (τ1,…,τn), . The variables for the urelements range over the elements of A and the variables of type (τ1,…, τn) range over those subsets of which are elements of . The theory Th(〈Aτ〉) is the set of all closed formulas in the language which hold in 〈Aτ〉 under natural interpretation of the constants. If 〈Bτ〉 is a model of Th(〈Aτ〉), then there exists a sequence 〈fτ〉 of functions fτ: Aτ → Bτ such that 〈fτ〉 is an elementary embedding from 〈Aτ〉 into 〈Bτ〉. 〈Bτ〉 is called a nonstandard model of 〈Aτ〉, if f0 is not surjective. Otherwise 〈Bτ〉 is called a standard model of 〈Aτ〉.This first concept of model theory in type logic seems to be preferable for applications in model theory, for example in nonstandard analysis, since all nice properties of first order model theory (completeness, compactness, and so on) are preserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.