Abstract

Let e ≥ 1 be an integer and S={x1,…,xn} a set of n distinct positive integers. The matrix ([xi, xj]e) having the power [xi, xj]e of the least common multiple of xi and xj as its (i, j)-entry is called the power least common multiple (LCM) matrix defined on S. The set S is called gcd-closed if (xi,xj) ∈ S for 1≤ i, j≤ n. Hong in 2004 showed that if the set S is gcd-closed such that every element of S has at most two distinct prime factors, then the power LCM matrix on S is nonsingular. In this paper, we use Hong's method developed in his previous papers to consider the next case. We prove that if every element of an arbitrary gcd-closed set S is of the form pqr, or p2qr, or p3qr, where p, q and r are distinct primes, then except for the case e=1 and 270, 520 ∈ S, the power LCM matrix on S is nonsingular. We also show that if S is a gcd-closed set satisfying xi< 180 for all 1≤ i≤ n, then the power LCM matrix on S is nonsingular. This proves that 180 is the least primitive singular number. For the lcm-closed case, we establish similar results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.