Abstract
A general framework of non-perturbative quantum field theory on a curved background is proposed. A quantum field theory is in this setting characterised by an embedding of a space of field configurations into a Hilbert space over R∞. This embedding, which is only local up to a scale that we interpret as the Planck scale, coincides in the local and flat limit with the plane wave expansion known from canonical quantisation. We identify a universal Bott–Dirac operator acting in the Hilbert space over R∞ and show that it gives rise to the free Hamiltonian both in the case of a scalar field theory and in the case of a Yang–Mills theory. These theories come with a canonical fermionic sector for which the Bott–Dirac operator also provides the Hamiltonian. We prove that Hilbert space representations of algebras of observables exist non-perturbatively for a real scalar theory and for a gauge theory, both with or without the fermionic sectors, and show that the free theories are given by semi-finite spectral triples over the respective configuration spaces. Finally, we propose a class of quantum field theories whose interactions are generated by inner fluctuations of the Bott–Dirac operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.