Abstract

High numerical apertures can result in distortions appearing in a single-shot image, rendering the acquisition of usable images challenging, if not outright impossible. However, in the realm of single-pixel imaging, various strategies can be employed to effectively inspect objects with an excellent resolution, contrast and brightness. Recent advancements in flat photonic components have facilitated the development of compact nonparaxial imaging systems, which show great promise, particularly in the THz range of wavelengths. These innovations hold the potential to advance fields such as communication, material inspection and spectroscopy. In this study, we delve into the imaging of semi-transparent objects with varying levels of detail. Furthermore, we introduce a nonparaxial design for a flat hyperbolical lens and evaluate its performance in these imaging scenarios, comparing it to structured illumination techniques involving Airy, Bessel, and common thin lens configurations. We present findings regarding potential improvements in imaging attributable to the nonparaxial hyperbolical lens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.