Abstract

Boundary effects are well known to occur in nonparametric density estimation when the support of the density has a finite endpoint. The usual kernel density estimators require modifications when estimating the density near endpoints of the support. In this paper, we propose a new and intuitive method of removing boundary effects in density estimation. Our idea, which replaces the unwanted terms in the bias expansion by their estimators, offers new ways of constructing boundary kernels and optimal endpoint kernels. We also discuss the choice of bandwidth variation functions at the boundary region. The performance of our results are numerically analyzed in a Monte Carlo study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.