Abstract

Stable nonlinear equilibria of convection in the form of quasistationary, multiarmed spiral waves, up to a maximum of six spiral arms, are found in a slowly rotating fluid confined within a thin spherical shell governed by the three-dimensional Navier–Stokes equation, driven by a radial unstable temperature gradient and affected by a weak Coriolis force. It is shown that three essential ingredients are generally required for the formation of the multiarmed spirals: the influence of slow rotation, large-aspect-ratio geometry and the effect of weak nonlinearity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.