Abstract
Nonlinear semiconductor devices are modeled using the sparse point representation based upon interpolating wavelets. The functions of potential, fields, electron, and hole current densities inside the device are represented by a twofold expansion in scaling functions and wavelets. In most regions where the functions are smoothly varying, only scaling functions are employed as the bases. In contrast, in small regions with sharp material or field variations, additional basis functions, i.e., wavelets, are introduced. A nonuniform mesh generated in this manner is fully adaptive, dynamic, and object oriented. Examples of device simulations are presented, demonstrating good agreement with published literature and commercial software. The numerical examples also show substantial savings in computer memory for electrically large problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.