Abstract

The response of a dynamical flame model to imposed acoustic accelerations is studied analytically and numerically. Through linear stability analyses, two analytical approximations for the primary and the parametric stability boundaries are found. The approximation for the primary instability boundary is accurate for any periodic accelerations, in the limit of large acoustic frequencies. The critical acoustic amplitude u a for Landau–Darrieus instability suppression is identified and found to depend only on the density contrast and the shape of the periodic acoustic stimuli. The proposed model evolution equation is next integrated numerically with various imposed acoustic accelerations; the primary and parametric flame responses are identified. It is shown analytically and numerically that in the presence of a fully developed, yet weakened by acoustics, Landau–Darrieus (or primary) instability the wrinkle amplitude and the mean flame speed oscillate at the same frequency as the acoustic stimuli; the threshold for suppression of primary instability by acoustic forcing is determined exactly. Increasing the acoustic amplitude allows the flame to respond parametrically to the acoustics. This response is characterised by troughs and crests interchanging their roles while the mean flame speed again oscillates with the same frequency as the acoustic stimuli and at twice that of wrinkle amplitude oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.