Abstract

In this paper, the H infin filtering problem is investigated for a general class of nonlinear discrete-time stochastic systems with missing measurements. The system under study is not only corrupted by state-dependent white noises but also disturbed by exogenous inputs. The measurement output contains randomly missing data that is modeled by a Bernoulli distributed white sequence with a known conditional probability. A filter of very general form is first designed such that the filtering process is stochastically stable and the filtering error satisfies H infin performance constraint for all admissible missing observations and nonzero exogenous disturbances under the zero-initial condition. The existence conditions of the desired filter are described in terms of a second-order nonlinear inequality. Such an inequality can be decoupled into some auxiliary ones that can be solved independently by taking special form of the Lyapunov functionals. As a consequence, a linear time-invariant filter design problem is discussed for the benefit of practical applications, and some simplified conditions are obtained. Finally, two numerical simulation examples are given to illustrate the main results of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.