Abstract

AbstractThe paper develops a systematic procedure for formulating finite elements on manifolds. The theoretical developments give rise to a modular computational framework for composing coordinate transformations and manifold parameterizations. The procedure is demonstrated with the Cosserat rod model furnishing a novel finite element formulation that rectifies the lack of objectivity of existing finite elements without violating the director constraints or compromising the symmetry of the tangent stiffness at equilibrium. The framework is element‐independent, allowing its implementation as a wrapper to existing element libraries without modification of the element state determination procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.