Abstract

We prove Central Limit Theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combine asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and Total Variation bounds for Gaussian subordinated fields. We discuss application to geometric functionals like the Defect and invariant statistics, e.g. polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.