Abstract

ABSTRACTA longstanding conjecture asserts that every finite nonabelian p-group admits a noninner automorphism of order p. In this paper we give some necessary conditions for a possible counterexample G to this conjecture, in the case when G is a 2-generator finite p-group. Then we show that every 2-generator finite p-group with abelian Frattini subgroup has a noninner automorphism of order p.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.