Abstract

We consider a noncooperative $n$-player principal eigenvalue game which is associated with an infinitesimal generator of a stochastically perturbed multi-channel dynamical system -- where, in the course of such a game, each player attempts to minimize the asymptotic rate with which the controlled state trajectory of the system exits from a given bounded open domain. In particular, we show the existence of a Nash-equilibrium point (i.e., an $n$-tuple of equilibrium linear feedback operators) that is distinctly related to a unique maximum closed invariant set of the corresponding deterministic multi-channel dynamical system, when the latter is composed with this $n$-tuple of equilibrium linear feedback operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.