Abstract

Gradient descent (GD) and stochastic gradient descent (SGD) are the workhorses of large-scale machine learning. While classical theory focused on analyzing the performance of these methods in convex optimization problems, the most notable successes in machine learning have involved nonconvex optimization, and a gap has arisen between theory and practice. Indeed, traditional analyses of GD and SGD show that both algorithms converge to stationary points efficiently. But these analyses do not take into account the possibility of converging to saddle points. More recent theory has shown that GD and SGD can avoid saddle points, but the dependence on dimension in these analyses is polynomial. For modern machine learning, where the dimension can be in the millions, such dependence would be catastrophic. We analyze perturbed versions of GD and SGD and show that they are truly efficient—their dimension dependence is only polylogarithmic. Indeed, these algorithms converge to second-order stationary points in essentially the same time as they take to converge to classical first-order stationary points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.