Abstract
In the present paper we study stability of recurrence equations (which in particular case contain dynamics of rational functions) generated by contractive functions defined on an arbitrary non-Archimedean algebra. Moreover, multirecurrence equations are considered. We also investigate reverse recurrence equations which have application in the study of p-adic Gibbs measures. Note that our results also provide the existence of unique solutions of nonlinear functional equations. We should stress that the non-Archimedeanity of the algebra is essentially used, therefore, the methods applied in the present paper are not valid in the Archimedean setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.