Abstract

Abstract We analyze the effects of melting and volumetric heat losses on the propagation of a reaction front in condensed phase combustion. Considering both homogeneous and heterogeneous models for the reaction rate, we calculate the propagation velocity for steady, planar burning as a function of the parameters in the problem. In particular, we show that this quantity is a multi-valued function of the heat loss parameter. We interpret the critical value of this parameter at which the propagation velocity has a vertical tangent, and which varies with the melting parameter, as an extinction limit beyond which a steady, planar combustion wave cannot sustain itself. We also present a model for nonsteady, nonplanar burning and consider the linear stability of the steady, planar solution. As in the adiabatic case, this basic solution is unstable to pulsating disturbances for sufficiently large values of a modified activation energy parameter. We show, in agreement with experimental results, that the effects of...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.