Abstract

We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler-Poincar\'e theory of ideal fluids with advected quantities. All calculations can be performed without Lagrangian variables, by using the Eulerian vector fields that generate the symmetries, and we identify the time-evolution equation that these vector fields satisfy. When advected quantities (such as advected scalars or densities) are present, there is an additional constraint that the vector fields must leave the advected quantities invariant. We show that if this constraint is satisfied initially then it will be satisfied for all times. We then show how to solve these constraint equations in various examples to obtain evolution equations from the conservation laws. We also discuss some fluid conservation laws in the Euler-Poincar\'e theory that do not arise from Noether symmetries, and explain the relationship between the conservation laws obtained here, and the Kelvin-Noether theorem given in Section 4 of Holm, Marsden and Ratiu, {\it Adv. in Math.}, 1998.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.