Abstract
In this paper Hamiltonian system of time dependent periodic Newton equations is studied. It is shown that for dimensions 3 and higher the following rigidity results holds true: if all the orbits in a neighborhood of infinity are action minimizing then the potential must be constant. This gives a generalization of the previous result Bialy and Polterovich (Math Res Lett 2(6):695–700, 1995), where it was required all the orbits to be minimal. As a result we have the following application: suppose that for the time-1 map of the Hamiltonian flow there exists a neighborhood of infinity which is filled by invariant Lagrangian tori homologous to the zero section. Then the potential must be constant. Remarkably, the statement is false for \(n=1\) case and remains unknown to the author for \(n=2\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.