Abstract

Noncommutative cryptography is based on applications of algebraic structures like noncommutative groups, semigroups, and noncommutative rings. Its intersection with Multivariate cryptography contains studies of cryptographic applications of subsemigroups and subgroups of affine Cremona semigroups defined over finite commutative rings. Efficiently computed homomorphisms between stable subsemigroups of affine Cremona semigroups can be used in tame homomorphisms protocols schemes and their inverse versions. The implementation scheme with the sequence of subgroups of affine Cremona group that defines the projective limit was already suggested. We present the implementation of another scheme that uses two projective limits which define two different infinite groups and the homomorphism between them. The security of the corresponding algorithm is based on complexity of the decomposition problem for an element of affine Cremona semigroup into a product of given generators. These algorithms may be used in postquantum technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.