Abstract

This paper studies the key techniques of the measurement and communication system for inter-satellite links (ISLs) of global navigation satellite system. A fixed link topology is designed based on the analysis of inter-satellite geometric properties and spatial parameters of the standard Walker24/3/2 constellation. This design can achieve full network coverage with small number of hops, significantly reduce the number of ISLs, and enhance the feasibility and reliability of the system. A new time-division duplex mode, as well as an integrated measurement and communication scheme, is proposed based on the designed topology. Furthermore, mathematical formulas, error models, and modification methods regarding two-way ranging and time synchronization algorithms using spread spectrum non-coherent data frame for this new system are comprehensively discussed. Theoretical analysis and simulation studies demonstrate that our design, compared with current GPS systems, has higher ranging and time synchronization precision, improved measurement efficiency, and higher channel utilization ratio and data transmission rate. It has no restrictions of constellation configuration, making it suitable for both MEO and the future MEO/GEO hybrid constellations. The results in this paper can serve as strong technical support for the next generation of GNSS ISL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.