Abstract

Motion of particles in a dilute turbulent boundary layer, near a flat wall is simulated numerically. Eulerian–Eulerian two-way coupled model is used. Closures for the particulate-phase equations are derived from the kinetic theory of granular flow. One equation model is used to model turbulence in the gas-phase. Effects of inertial parameters of solid-phase such as flow density, material density, particle diameter and free stream velocity are investigated. Furthermore, effects of granular temperature and particulate viscosity on motion of particles are discussed. Simulation results are compared with available numerical and experimental results. Results show that the granular temperature and solid-phase viscosity have a noticeable effect on simulation accuracy especially near the wall. Results are closer to experimental results when implementing the inlet granular temperature which is equal to area-weighted average of granular temperature in the boundary layer. Non-dimensional velocity profiles of solid-phase have a general trend and their dependence on location and free stream velocity is found very weak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.