Abstract
Near-optimization is as sensible and important as optimization for both theory and applications. This paper deals with necessary and sufficient conditions for near-optimal singular stochastic controls for nonlinear controlled stochastic differential equations of mean-field type, which is also called McKean–Vlasov-type equations. The proof of our main result is based on Ekeland’s variational principle and some estimates of the state and adjoint processes. It is shown that optimal singular control may fail to exist even in simple cases, while near-optimal singular controls always exist. This justifies the use of near-optimal stochastic controls, which exist under minimal hypotheses and are sufficient in most practical cases. Moreover, since there are many near-optimal singular controls, it is possible to select among them appropriate ones that are easier for analysis and implementation. Under an additional assumptions, we prove that the near-maximum condition on the Hamiltonian function is a sufficient condition for near-optimality. This paper extends the results obtained in (Zhou, X.Y.: SIAM J. Control Optim. 36(3), 929–947, 1998) to a class of singular stochastic control problems involving stochastic differential equations of mean-field type. An example is given to illustrate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.