Abstract
Spline quasi-interpolants are practical and effective approximation operators. In this paper, we construct QIs with optimal approximation orders and small infinity norms called near-best discrete quasi-interpolants which are based on Ω -splines, i.e. B-splines with octagonal supports on the uniform four-directional mesh of the plane. These quasi-interpolants are exact on some space of polynomials and they minimize an upper bound of their infinity norms depending on a finite number of free parameters. We show that this problem has always a solution, in general nonunique. Concrete examples of such quasi-interpolants are given in the last section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.